Abstract

In view of the customer churn problem faced by banks, this paper will use the Python language to clean and select the original dataset based on real bank customer data, and gradually condense the 626 customer features in the original dataset to 77 customer features. Then, based on the pre-processed bank data, this paper uses logistic regression, decision tree and neural network to establish three bank customer churn warning models and compares them. The results show that the accuracy of the three models in predicting bank loss customers is above 92%. Finally, based on the logistic regression model with better evaluation results, this paper analyses the characteristics of the lost customers for the bank, and gives the bank management suggestions for the lost customers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.