Abstract

Commonly used hexagonal honeycomb is manufactured by cold expansion of a laminate of thin metal foils that are bonded along periodically placed strips. The process results in nearly hexagonal cells with double walls in one direction, small rounding at the bent corners, and leaves behind residual stresses. This paper evaluates the effect of the expansion on the compressive response of the honeycomb. A finite element model of a characteristic cell is developed using shell elements and by applying to it the appropriate periodicity conditions. The model is first expanded mechanically producing the realistic geometry and changes to the mechanical properties of the material. The cell is subsequently compressed laterally leading first to buckling, followed by collapse by progressive folding, all similar to the behavior of ideal, stress free hexagonal honeycomb. The calculated buckling stress is about 10% higher than the ideal case, the collapse stress about 5% lower and the average crushing stress somewhat higher. In addition, the buckling and collapse stresses show some sensitivity to the size of periodic domain analyzed, as indeed was the case for the ideal case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.