Abstract

The dispersed phase in liquid–liquid emulsions and air–liquid mixtures can often be fragmented into smaller sizes by the surrounding turbulent carrier phase. The critical parameter that controls this process is the breakup frequency, which is defined from the breakup kernel in the population balance equation. The breakup frequency controls how long it takes for the dispersed phase to reach the terminal size distribution for given turbulence. In this article, we try to summarize the key experimental results and compile the existing datasets under a consistent framework to find out what is the characteristic timescale of the problem and how to account for the inner density and viscosity of the dispersed phase. Furthermore, by pointing out the inconsistency of existing experimental data, the key important unsolved questions and related problems on the breakup frequency of bubbles and droplets are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.