Abstract

The wavevector-dependent shear viscosity, eta(k), is evaluated for a range of temperatures in a supercooled binary Lennard-Jones liquid. The mode coupling theory of Keyes and Oppenheim (Phys. Rev. A 1973, 8, 937) expresses the self-diffusion constant, D, in terms of eta(k). Replacing eta(k) with the usual viscosity, eta identical with eta(k = 0), yields the Stokes-Einstein law. It is found that the breakdown of the SE law in this system is well described by keeping the simulated k-dependence. Simply put, bath processes on all length scales (wavevectors) contribute to D, the system is much less viscous at finite k, and thus D exceeds the SE estimate based upon eta. The functional form of eta(k) allows for the estimation of a correlation length that grows with decreasing T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.