Abstract

SynopsisThe classically well-known relation between the number of linearly independent solutions of the electro- and magnetostatic boundary value problems (harmonic Dirichlet and Neumann vector fields) and topological characteristics (genus and number of boundaries) of the underlying domain in 3-dimensional euclidean space is investigated in the framework of Hilbert space theory. It can be shown that this connection is still valid for a large class of domains with not necessarily smooth boundaries (segment property). As an application the inhomogeneous boundary value problems of electro- and magnetostatics are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.