Abstract

The problem of the boundary condition setting is considered for creeping flows over cylindrical and spherical obstacles. The interaction of Newtonian and micropolar liquid with the solid surface is discussed in the context of the Stokes paradox and the cell model technique. Mathematical and mechanical aspects of various types of boundary conditions at the hypothetical liquid surface are considered in the framework of the spherical cell model used for the simulation of membrane flows. New properties of the flow pattern in a spherical cell are found, and their independence of the boundary conditions is rigorously proved. The criteria of the boundary conditions equivalence are derived in terms of the membrane porosity and hydrodynamic permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call