Abstract

Prediction of load capacity and friction depends on the assumed boundary conditions. The inlet comprises swirl and counter flows, admitting only a portion of the inward flow into the conjunctional gap. At the contact exit, the lubricant film ruptures with multi-phase flow through a cavitation region. Therefore, the boundary conditions affect the load carrying capacity and friction. A Navier–Stokes solution of multi-phase flow, including vapour transport is presented, with determined realistic boundary conditions.The evaluated boundaries agree with potential flow analysis satisfying compatibility conditions, not hitherto reported in literature. The investigation is extended to the determination of optimum compression ring contacting geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.