Abstract

Let {X 1, …, X n } and {Y 1, …, Y m } be two samples of independent and identically distributed observations with common continuous cumulative distribution functions F(x)=P(X≤x) and G(y)=P(Y≤y), respectively. In this article, we would like to test the no quantile treatment effect hypothesis H 0: F=G. We develop a bootstrap quantile-treatment-effect test procedure for testing H 0 under the location-scale shift model. Our test procedure avoids the calculation of the check function (which is non-differentiable at the origin and makes solving the quantile effects difficult in typical quantile regression analysis). The limiting null distribution of the test procedure is derived and the procedure is shown to be consistent against a broad family of alternatives. Simulation studies show that our proposed test procedure attains its type I error rate close to the pre-chosen significance level even for small sample sizes. Our test procedure is illustrated with two real data sets on the lifetimes of guinea pigs from a treatment-control experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.