Abstract

The Totally Asymmetric Simple Exclusion Process (TASEP) is an important example of a particle system driven by an irreversible Markov chain. In this paper we give a simple yet rigorous derivation of the chain stationary measure in the case of parallel updating rule. In this parallel framework we then consider the blockage problem (aka slow bond problem). We find the exact expression of the current for an arbitrary blockage intensity $\varepsilon$ in the case of the so-called rule-184 cellular automaton, i.e. a parallel TASEP where at each step all particles free-to-move are actually moved. Finally, we investigate through numerical experiments the conjecture that for parallel updates other than rule-184 the current may be non-analytic in the blockage intensity around the value $\varepsilon = 0$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.