Abstract
We describe and analyze a randomized algorithm which solves a polynomial system over the rationals defined by a reduced regular sequence outside a given hypersurface. We show that its bit complexity is roughly quadratic in the Bézout number of the system and linear in its bit size. The algorithm solves the input system modulo a prime number p and applies p-adic lifting. For this purpose, we establish a number of results on the bit length of a “lucky” prime p, namely one for which the reduction of the input system modulo p preserves certain fundamental geometric and algebraic properties of the original system. These results rely on the analysis of Chow forms associated to the set of solutions of the input system and effective arithmetic Nullstellensätze.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.