Abstract
We consider the problem of maximizing the probability of choosing the largest from a sequence of N observations when N is a bounded random variable. The present paper gives a necessary and sufficient condition, based on the distribution of N, for the optimal stopping rule to have a particularly simple form: what Rasmussen and Robbins (1975) call an s(r) rule. A second result indicates that optimal stopping rules for this problem can, with one restriction, take virtually any form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.