Abstract
This is a continuation of our work (Gonzalez-Cervantes et al. in On the Bergman theory for solenoidal and irrotational vector fields. I. General theory. Operator theory: advances and applications. Birkhauser, accepted) where for solenoidal and irrotational vector fields theory as well as for the Moisil–Theodoresco quaternionic analysis we introduced the notions of the Bergman space and the Bergman reproducing kernel and studied their main properties. In particular, we described the behavior of the Bergman theory for a given domain whenever the domain is transformed by a conformal map. The formulas obtained hint that the corresponding objects (spaces, operators, etc.) can be characterized as conformally covariant or invariant, and in the present paper we construct a series of categories and functors which allow us to give such characterizations in precise terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.