Abstract
The bend-numberb(G) of a graph G is the minimum k such that G may be represented as the edge intersection graph of a set of grid paths with at most k bends. We confirm a conjecture of Biedl and Stern showing that the maximum bend-number of outerplanar graphs is 2. Moreover we improve the formerly known lower and upper bounds for the maximum bend-number of planar graphs from 2 and 5 to 3 and 4, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.