Abstract

Wiener systems are nonlinear dynamical systems, consisting of a linear dynamical system and a static nonlinear system in a series connection. Existing results for analysis and identification of Wiener systems assume zero initial conditions. In this paper, we consider the response of a Wiener system to initial conditions only, i.e., we consider autonomous Wiener systems. Our main result is a proof that the behavior of an autonomous Wiener system with a polynomial nonlinearity is included in the behavior of a finite-dimensional linear system. The order of the embedding linear system is at most n+dd – the number of combinations with repetitions of d elements out of n elements – where n is the order of the linear subsystem and d is the degree of the nonlinearity. The relation between the eigenvalues of the embedding linear system and the linear subsystem is given by a rank-1 factorization of a symmetric d-way tensor. As an application of the result, we outline a procedure for exact (deterministic) identification of autonomous Wiener systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.