Abstract

Let S be a subset of R^d with finite positive Lebesgue measure. The Beer index of convexity b(S) of S is the probability that two points of S chosen uniformly independently at random see each other in S. The convexity ratio c(S) of S is the Lebesgue measure of the largest convex subset of S divided by the Lebesgue measure of S. We investigate a relationship between these two natural measures of convexity of S. We show that every subset S of the plane with simply connected components satisfies b(S) <= alpha c(S) for an absolute constant alpha, provided b(S) is defined. This implies an affirmative answer to the conjecture of Cabello et al. asserting that this estimate holds for simple polygons. We also consider higher-order generalizations of b(S). For 1 = 2 there is a constant beta(d) > 0 such that every subset S of R^d satisfies b_d(S) 0 such that for every epsilon from (0,1] there is a subset S of R^d of Lebesgue measure one satisfying c(S) = (gamma epsilon)/log_2(1/epsilon) >= (gamma c(S))/log_2(1/c(S)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.