Abstract
Let $\cM_r$ denote the moduli space of semi-stable rank-$r$ vector bundles with trivial determinant over a smooth projective curve $C$ of genus $g$. In this paper we study the base locus $\cB_r \subset \cM_r$ of the linear system of the determinant line bundle $\cL$ over $\cM_r$, i.e., the set of semi-stable rank-$r$ vector bundles without theta divisor. We construct base points in $\cB_{g+2}$ over any curve $C$, and base points in $\cB_4$ over any hyperelliptic curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.