Abstract

UDC 517.9 We consider the balanced pantograph equation (BPE) y ′ ( x ) + y ( x ) = ∑ k = 1 m p k y ( a k x ) , where a k , p k > 0 and ∑ k = 1 m p k = 1. It is known that if K = ∑ k = 1 m p k ln a k ≤ 0 then, under mild technical conditions, the BPE does not have bounded solutions that are not constant, whereas for K > 0 these solutions exist. In the present paper, we deal with a BPE of <em>mixed type</em>, i.e., a 1 < 1 < a m , and prove that, in this case, the BPE has a nonconstant solution y and that y ( x ) ∼ c x σ as x → ∞ , where c > 0 and σ is the unique positive root of the characteristic equation P ( s ) = 1 - ∑ k = 1 m p k a k - s = 0. We also show that y is unique (up to a multiplicative constant) among the solutions of the BPE that decay to zero as x → ∞ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.