Abstract
Let $\mathbf {A}$ be the family of functions which can be written as the average of two comparable Darboux functions. In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson characterized the family $\mathbf {A}$ and showed that if $\alpha \ge 2$, then $\mathbf {A} \cap \mathbf {B}_\alpha$ is the family of the averages of comparable Darboux functions in Baire class $\alpha$. They also asked whether the latter result holds true also for $\alpha =1$. The main goal of this paper is to answer this question in the negative and to characterize the family of the averages of comparable Darboux Baire one functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.