Abstract
A maximal vector of a set ~s one which is not less than any other vector m all components We derive a recurrence relation for computing the average number of maxunal vectors m a set of n vectors m d-space under the assumpUon that all (nl) a relative ordermgs are equally probable. Solving the recurrence shows that the average number of maxmaa is O((ln n) a-~) for fixed d We use this result to construct an algorithm for finding all the maxima that have expected running tmae hnear m n (for sets of vectors drawn under our assumptions) We then use the result to find an upper bound on the expected number of convex hull points m a random point set
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the ACM
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.