Abstract

Materials having a negative Poisson's ratio (auxetic) get fatter rather than thinner when uniaxially stretched. This phenomenon has been often explained through models that describe how particular geometric features in the micro or nanostructure of the material deform when subjected to uniaxial loads. Here, a new model based on scalene rigid triangles rotate relative to each other will be presented and analysed. It is shown that this model can afford a very wide range of Poisson's ratio values, the sign and magnitude of which depends on the shape of the triangles and the angles between them. This new model has the advantage that it is very generic and may be potentially used to describe the properties in various types of materials, including auxetic foams and their relative surface density. Specific applications of this model, such as a blueprint for a system that can exhibit temperature-dependent Poisson's ratios, are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.