Abstract

Network slicing is a fundamental feature of 5G systems that allows the partitioning of a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. While support for network slicing (e.g. identifiers, functions, signalling) is already defined in the latest 3GPP Release 15 specifications, solutions for efficient automated management of network slicing (e.g. automatic provisioning of slices) are still at a much more incipient stage, especially for what concerns the next-generation Radio Access Network (NG-RAN). In this context, and consistently with the new service-based management architecture defined by 3GPP for 5G systems, this paper presents a functional framework for the management of network slicing in a NG-RAN infrastructure, delineating the interfaces and information models necessary to support the dynamic and automatic deployment of RAN slices. A discussion on the complexity of such automation follows together with an illustrative description of the applicability of the overall framework and information models in the context of a neutral host provider scenario that offers RAN slices to third party service providers.

Highlights

  • 5G systems target the simultaneous support of a wide range of application scenarios and business models [1]

  • The necessary capabilities for network slicing support in 5G systems have been already defined in the latest 3rd Generation Partnership Project (3GPP) Release 15 specifications approved in June 2018, which include the definition of the network slice identifiers, denoted as Single Network Slice Selection Assistance Information (S-NSSAI) as well as the signalling procedures and functions necessary for network slice selection between the user equipment (UE), the next-generation Radio Access Network (RAN) (NG-RAN) and the new 5G Core Network (5GC) [4, 5]

  • More focused on the RAN domain, [20] introduced the notion of an on-demand capacity broker that allows a RAN provider to allocate a portion of network capacity for a particular time period and [21] provided some insight on the need to extend the current RAN management frameworks to support network slicing. Further progressing on this topic, in [22], we introduced a functional framework for the management of network slicing for a NG-RAN infrastructure, identifying the necessary information models and interfaces to support the dynamic provisioning of RAN slices

Read more

Summary

Introduction

NSD#2 contains the functions and NFVI resources used to implement RSI#2 and RSI#3, which includes the gNB-CU#2 VNF instantiated at PoP#2, gNB-DU#3 VNF at PoP#3 and gNB-DU#4 VNF at PoP#1, together with the corresponding RRH PNFs and interconnection VLs. In this last case, as NSD#2 is shared among RSI#2 and RSI#3, the split of the radio capacity among the two slices is done through the configuration of the RRMPolicyRatio attribute of the IOC instances for NRCell#2 and NRCell#3 within the NG-RAN NRM model.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.