Abstract

Global malware campaigns and large-scale data breaches show how everyday life can be impacted when the defensive measures fail to protect computer systems from cyber threats. Understanding the threat landscape and the adversaries’ attack tactics to perform it represent key factors for enabling an efficient defense against threats over the time. Of particular importance is the acquisition of timely and accurate information from threats intelligence sources available on the web which can provide additional intelligence on emerging threats even before they can be observed as actual attacks. In this paper, an approach to automate the assessment of cyber threat intelligence sources and predict a relevance score for each source is proposed. Specifically, a model based on meta-data and word embedding is defined and experimented by training regression models to predict the relevance score of sources on Twitter. The results evaluation show that the assigned score allows to reduce the waiting time for intelligence verification, on the basis of its relevance, thus improving the time advantage of early threat detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.