Abstract

This paper studies vanishing of Ext modules over Cohen–Macaulay local rings. The main result of this paper implies that the Auslander–Reiten conjecture holds for maximal Cohen–Macaulay modules of rank one over Cohen–Macaulay normal local rings. It also recovers a theorem of Avramov–Buchweitz–Şega and Hanes–Huneke, which shows that the Tachikawa conjecture holds for Cohen–Macaulay generically Gorenstein local rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.