Abstract

To analyze the attainable order of m-stage implicit (collocation-based) Runge-Kutta methods for the delay differential equation (DDE) y′(t) = by(qt), 0 < q ≤ 1 with y(0) = 1, and the delay Volterra integral equation (DVIE) y(t) = 1 + $$\tfrac{b}{q}\int {_0^{qt} }$$ y(s) ds with proportional delay qt, 0 < q ≤ 1, our particular interest lies in the approximations (and their orders) at the first mesh point t = h for the collocation solution v(t) of the DDE and the iterated collocation solution u it(t) of the DVIE to the solution y(t). Recently, H. Brunner proposed the following open problem: “For m ≤ 3, do there exist collocation points c i = c i(q), i = 1, 2,..., m in [0,1] such that the rational approximant v(h)is the (m, m)-Padé approximant to y(h)? If these exist, then |v(h) − y(h)| = O(h 2m+1) but what is the collocation polynomial M m(t; q) = K Π i=1 m (t − c i) of v(th), t ∈ [0, 1]?” In this paper, we solve this question affirmatively, and give the related results between the collocation solution v(t) of the DDE and the iterated collocation solution u it(t) of the DVIE. We also answer to Brunner's second open question in the case that one collocation point is fixed at the right end point of the interval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call