Abstract

The general theoretical approach to the asymptotic extraction of the signal series from the additively perturbed signal with the help of singular spectrum analysis (briefly, SSA) was already outlined in Nekrutkin (2010), SII, vol. 3, 297–319. In this paper we consider the example of such an analysis applied to the linear signal and the additive sinusoidal noise. It is proved that in this case the so-called reconstruction errors r_i(N) of SSA uniformly tend to zero as the series length N tends to infinity. More precisely, we demonstrate that max_i |r_i(N)| = O(N^(−1)) if N → ∞ and the “window length” L equals (N + 1)/2. It is important to mention, that the completely different result is valid for the increasing exponential signal and the same noise. As it is proved in Ivanova, Nekrutkin (2019), SII, vol. 12, 1, 49–59, in this case any finite number of last terms of the error series does not tend to any finite or infinite values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.