Abstract

The problem of estimating the mode of a continuous distribution has received considerable attention in recent years. Grenander (1965) has proposed a direct estimator of the mode based on the intuitive idea that raising a density to a positive power will make the mode more pronounced and, hence, easier to estimate. Grenander shows his estimator is weakly consistent and conjectures that it is also asymptotically normal. The analytical complexity of the estimator makes a mathematical study of this conjecture quite difficult. Another approach is to conduct goodness-of-fit studies to see how well the normal distribution approximates the sampling distribution of the estimator for various sample sizes and underlying parent distributions. The results of the study are presented where the main inferential tools were a Kolmogorov–Smirnov test statistic and a modified Shapiro–Wilk test statistic. The results of a simulation study exploring other large sample properties of the estimator (and a modification) are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.