Abstract

We consider linear spectral statistics built from the block-normalized correlation matrix of a set of M mutually independent scalar time series. This matrix is composed of [Formula: see text] blocks. Each block has size [Formula: see text] and contains the sample cross-correlation measured at L consecutive time lags between each pair of time series. Let N denote the total number of consecutively observed windows that are used to estimate these correlation matrices. We analyze the asymptotic regime where [Formula: see text] while [Formula: see text], [Formula: see text]. We study the behavior of linear statistics of the eigenvalues of this block correlation matrix under these asymptotic conditions and show that the empirical eigenvalue distribution converges to a Marcenko–Pastur distribution. Our results are potentially useful in order to address the problem of testing whether a large number of time series are uncorrelated or not.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.