Abstract
In the paper, one class of differential systems with nonlinearities satisfying sector constraints is considered. We study the case where some of the sector constraints are given by linear inequalities, and some by nonlinear ones. It is assumed that the coefficients in the system can switch from one set of values to another. Sufficient conditions for the asymptotic and practical stability of the zero solution of the system are investigated using the direct Lyapunov method and the theory of differential inequalities. Restrictions on the switching law that provide a given region of attraction and ultimate bound for solutions of the system are obtained. An approach based on the construction of different differential inequalities for the Lyapunov function in different parts of the phase space is proposed, which makes it possible to improve the results obtained. The results are applied to the analysis of one automatic control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.