Abstract

This study reports on the suitability of different experimental techniques to evaluate chemical, microstructural, and mechanical changes associated with in vivo oxidation encountered in historical polyethylene components. To accomplish this aim, eight traceable tibial inserts were analyzed after revision surgery. The knee bearings were gamma sterilized in air and implanted for an average of 11.5 years after a shelf life of no longer than 1 year. Characterization of oxidation and transvinylene indexes, crystallinity, amorphous, and intermediate phase fractions, along with hardness and surface modulus, were performed in transverse sections of each bearing using Fourier transform infrared spectroscopy, Raman spectroscopy, and nanoindentation, respectively. Generally, subsurface maxima in the crystallinity, oxidation index, and hardness were observed at a depth of about 1 mm in all of the bearings. The superior surfaces and anterior-posterior faces of the inserts exhibited significantly higher oxidation and greater crystallinity than the inferior side. These observations suggest that the metallic tray may limit the access of molecular oxygen to the backside of the tibial inserts. We conclude that chemical, physical, and mechanical properties data confirm the occurrence of in vivo degradation in the long-term implanted knee components following gamma irradiation in air. Furthermore, infrared spectroscopy alone appeared to provide excellent insight into the oxidation and crystallization state of the in vivo oxidized polyethylene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.