Abstract
We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially ( P 1 ) n (\mathbb P^1)^n . A combinatorial characterization, the ( ⋆ ) (\star ) -property, is known in P 1 × P 1 \mathbb P^1 \times \mathbb P^1 . We propose a combinatorial property, ( ⋆ s ) (\star _s) with 2 ≤ s ≤ n 2\leq s\leq n , that directly generalizes the ( ⋆ ) (\star ) -property to ( P 1 ) n (\mathbb P^1)^n for larger n n . We show that X X is ACM if and only if it satisfies the ( ⋆ n ) (\star _n) -property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.