Abstract

An approximate number is an ordered pair consisting of a (real) number and an error bound, briefly error, which is a (real) non-negative number. To compute with approximate numbers the arithmetic operations on errors should be well-known. To model computations with errors one should suitably define and study arithmetic operations and order relations over the set of non-negative numbers. In this work we discuss the algebraic properties of non-negative numbers starting from familiar properties of real numbers. We focus on certain operations of errors which seem not to have been sufficiently studied algebraically. In this work we restrict ourselves to arithmetic operations for errors related to addition and multiplication by scalars. We pay special attention to subtractability-like properties of errors and the induced “distance-like” operation. This operation is implicitly used under different names in several contemporary fields of applied mathematics (inner subtraction and inner addition in interval analysis, generalized Hukuhara difference in fuzzy set theory, etc.) Here we present some new results related to algebraic properties of this operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.