Abstract
Archimedes knew that the area between a parabola and any chord AB on the parabola is four thirds of the area of triangle <TEX>${\Delta}ABP$</TEX> where P is the point on the parabola at which the tangent is parallel to AB. We consider whether this property (and similar ones) characterizes parabolas. We present five conditions which are necessary and sufficient for a strictly convex curve in the plane to be a parabola.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.