Abstract
Termites are social insects with an extraordinary ability to digest cellulose. Termite societies are structured into castes, and patterns of postembryonic development vary between different termite species. The apterous line may exhibit polymorphism ("physical castes"), in which workers are dimorphic and soldiers can be either dimorphic or trimorphic. We examined the occurrence of polymorphism in the apterous line of Velocitermes heteropterus and determined the developmental pathways for this termite species. We also investigated the expression of the cellulase genes encoding β-glucosidase and endo-β-1,4-glucanase among the castes to determine whether there is a difference in digestion and, consequently, a possible division of labor with respect to this activity among the worker castes. The apterous line of V. heteropterus presents individuals of both sexes with two larval instars. The female larvae become major workers, and the male larvae become minor workers and soldiers. The expression of β-glucosidase was similar within the castes, but the expression of endo-β-1,4-glucanase was higher in workers than in soldiers. No significant differences were found between minor and major workers. These results suggest that there is no division of labor between the minors and majors with regard to cellulose digestion, with both workers contributing similarly to this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.