Abstract

In this paper we investigate the approximation power of local bivariate quadratic C 1 quasi-interpolating (q-i) spline operators with a four-directional mesh. In particular, we show that they can approximate a real function and its partial derivatives up to an optimal order and we derive local and global upper bounds both for the errors and for the spline partial derivatives, in the case the spline is more differentiable than the function. Then such general results are applied to prove new properties of two interesting q-i spline operators, proposed and partially studied in Chui and Wang (Sci. Sinica XXVII (1984) 1129–1142).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.