Abstract

We prove mathematical approximation results for the (hyperviscous) Burgers equation driven by additive Gaussian noise. In particular we show that solutions of ``approximating equations'' driven by a discretized noise converge towards the solution of the original equation when the discretization parameter gets small. The convergence takes place in the expected value of arbitrary powers of certain norms; i.e., all moments of the difference of the solutions tend to zero in certain function spaces. For the hyperviscous Burgers equation, these results are applied to justify the approximation of certain correlation functions that play a major role in statistical turbulence theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.