Abstract
The Z-function is the real function given by Z(t)=eiθ(t)ζ12+it, where ζ(s) is the Riemann zeta function, and θ(t) is the Riemann–Siegel theta function. The function, central to the study of the Riemann hypothesis (RH), has traditionally posed significant computational challenges. This research addresses these challenges by exploring new methods for approximating Z(t) and its zeros. The sections of Z(t) are given by ZN(t):=∑k=1Ncos(θ(t)−ln(k)t)k for any N∈N. Classically, these sections approximate the Z-function via the Hardy–Littlewood approximate functional equation (AFE) Z(t)≈2ZN˜(t)(t) for N˜(t)=t2π. While historically important, the Hardy–Littlewood AFE does not sufficiently discern the RH and requires further evaluation of the Riemann–Siegel formula. An alternative, less common, is Z(t)≈ZN(t)(t) for N(t)=t2, which is Spira’s approximation using higher-order sections. Spira conjectured, based on experimental observations, that this approximation satisfies the RH in the sense that all of its zeros are real. We present a proof of Spira’s conjecture using a new approximate equation with exponentially decaying error, recently developed by us via new techniques of acceleration of series. This establishes that higher-order approximations do not need further Riemann–Siegel type corrections, as in the classical case, enabling new theoretical methods for studying the zeros of zeta beyond numerics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.