Abstract

Mean-field models have been used to study large-scale and complex stochastic systems, such as large-scale data centers and dense wireless networks, using simple deterministic models (dynamical systems). This paper analyzes the approximation error of mean-field models for continuous-time Markov chains (CTMC), and focuses on mean-field models that are represented as finite-dimensional dynamical systems with a unique equilibrium point. By applying Stein's method and the perturbation theory, the paper shows that under some mild conditions, if the mean-field model is globally asymptotically stable and locally exponentially stable , the mean square difference between the stationary distribution of the stochastic system with size M and the equilibrium point of the corresponding mean-field system is O(1/M). The result of this paper establishes a general theorem for establishing the convergence and the approximation error (i.e., the rate of convergence) of a large class of CTMCs to their mean-field limit by mainly looking into the stability of the mean-field model, which is a deterministic system and is often easier to analyze than the CTMCs. Two applications of mean-field models in data center networks are presented to demonstrate the novelty of our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call