Abstract

The Value-at-Risk calculation reduces the dimensionality of the risk factor space. The main reasons for such simplifications are, e.g., technical efficiency, the logic and statistical appropriateness of the model. In Chapter 2 we present three simple mappings: the mapping on the market index, the principal components model and the model with equally correlated risk factors. The comparison of these models in Chapter 3 is based on the literatere on the verification of weather forecasts (Murphy and Winkler 1992, Murphy 1997). Some considerations on the quantitative analysis are presented in the fourth chapter. In the last chapter, we present empirical analysis of the DAX data using XploRe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.