Abstract

For a non-Hermitian operator A , the conjugate gradient method, instead of solving for the operator equation directly, solves the normal equations A*AX = A*Y , where A* is the adjoint operator. Even though in actual computations A*A is never formed, the condition number of the original operator equation is squared in the solution of A*AX = A*Y. One possible way to reduce the condition number is through preconditioning which in some cases either require some a priori information on the distribution of the eigenvalues of the operator, or requires additional preprocessing of the operator equation. In the generalized biconjugate gradient method one solves a non-Hermitian operator equation AX = Y directly. The application of the new method results in faster convergence. The generalized biconjugate gradient method does not minimize the residual or the error in the solution at each iteration, but reduces some power norm. This method however requires an additional 2N storage locations for a nonsymmetric operator,...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.