Abstract

Summary The application of the channel-fracturing technique can result in a significant increase in the conductivity of hydraulic fractures and reduced proppant usage. In soft rock formations, the conductivity of the partially propped fractures would depend not only on the volume fraction of the open channels, but also on the elastic deformation of open channels and fracture closure resulting from proppant consolidation and embedment. In this study, an analytical approach is developed for identifying the optimal proppant column spacing that maximizes the effective conductivity. The latter parameter can guide the design of the proppant-injection schedule and well-perforation scheme. To demonstrate the approach, we conduct a parametric study under realistic field conditions and identify the folds of increase in fracture conductivity and reduction in proppant use resulting from the optimized application of the channel-fracturing technique. The outcomes of the parametric study could be particularly useful in the application of the developed approach to soft rock formations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.