Abstract

One of the major obstacles to the widespread uptake of data-based Structural Health Monitoring so far, has been the lack of damage-state data for the (mostly high-value) structures of interest. To address this issue, a methodology for sharing data and models between structures has been developed-Population-Based Structural Health Monitoring (PBSHM). PBSHM works on the principle that, if populations of structures are sufficiently similar, or share sections which can be considered similar, then data and models can be shared between them for use in diagnostic inference. The PBSHM methodology therefore relies on two key components: firstly, identifying whether structures are sufficiently similar for successful transfer of diagnostics; this is achieved by the use of an abstract representation of structures. Secondly, machine learning techniques are exploited to effectively transfer information between the structures in a way that improves damage detection and classification across the whole population. Although PBSHM has been conceived to deal with large and general classes of structures, much of the detailed developments presented so far have concerned bridges; the aim of this paper is to provide similarly detailed discussions in the aerospace context. The overview here will examine data transfer between aircraft components, as well as illustrating how one might construct an abstract representation of a full aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.