Abstract
The isogeometric finite volume analysis is utilized in this research to numerically simulate the two-dimensional viscous wet-steam flow between stationary cascades of a steam turbine for the first time. In this approach, the analysis-suitable computational mesh with “curved” boundaries is generated for the fluid flow by employing a non-uniform rational B-spline (NURBS) surface that describes the cascade geometry, and the governing equations are then discretized by the NURBS representation. Thanks to smooth and accurate geometry representation of the NURBS formulation, the employed isogeometric framework not only resolves issues concerning the conventional mesh generation techniques of the finite volume method in steam turbine problems, but also, as validated against well-established experiments, significantly improves the accuracy of the numerical solution. In addition, the shock location in the cascade is predicted and tracked with a sufficient accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.