Abstract
In this paper, we propose a neural network approach to forecast AM/PM Jordan electric power load curves based on several parameters (temperature, date and the status of the day). The proposed method has an advantage of dealing with not only the nonlinear part of load curve but also with rapid temperature change of forecasted day, weekend and special day features. The proposed neural network is used to modify the load curve of a similar day by using the previous information. The suitability of the proposed approach is illustrated through an application to actual load data of Electric Power Company in Jordan. The results show an acceptable prediction for Short-Term Electrical Load Forecasting (STELF), with maximum regression factor 90%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.