Abstract

The reduced-order model of a time-invariant linear dynamical system, excited by a force of an impulsive type, may be readily obtained using the Ho-Kalman minimal-realization algorithm [1]. The method is based upon a particular factorization of the Hankel matrix in the Markovian representation of the discrete-time process. For stochastic systems, the applicability of the theory has been demonstrated by Akaike [2] on the assumption that the excitation is a zero-mean white noise of a gaussian type. Some of the most widely known output-only identification methods, such as Eigensystem Realization Algorithm (ERA), Canonical Variate Analysis (CVA), and Balanced Realization (BR)) are based upon the above-mentioned work, with the aid of a robust factorization technique, such as Singular-Value Decomposition (SVD). Notwithstanding the growing popularity of the above methods, some aspects of their applicability are not yet understood. Two points are of particular interest: the first regards the applicability of the theory in highly damped systems; and the second regards its applicability to systems driven by excitations different from the one hypothesized. The aim of the present work is to define a reliable test on the hypotheses. Some numerical and experimental results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.