Abstract

A plasma process sequence has been developed to prepare chemical micropatterns on polymeric biomaterial surfaces. These patterns induce a guided localized cell layover at microscopic dimension. Two subsequent plasma steps are applied. In the first functionalization step a microwave ammonia plasma introduces amino groups to obtain areas for very good cell adhesion; the second passivation step combines pattern generation and creation of cell repelling areas. This downstream microwave hydrogen plasma process removes functional groups and changes the linkages of polymer chains at the outermost surfaces. Similar results have been obtained on different polymers including polystyrene (PS), polyhydroxyethylmethacrylate (PHEMA), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polyethylenenaphthalate (PEN). Such a rather universal chemical structuring process could widen the availability of biomaterials with specific surface preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.