Abstract

A ϕ 4-model with symmetric double-well-like on-site potential and anharmonic, infinite range interactions is investigated. This model exhibits a first order phase transition at a temperature T c. The time-dependent displacement correlation function is studied in the framework of the mode coupling theory (MCT). Depending on the choice of slow modes, MCT makes qualitatively different predictions which are compared with MD-results. These numerical results suggest that only the order parameter mode {ie1-1} should be considered as slow. In that case it is shown that MCT yields a dynamical transition in the supercooled high-temperature phase {ie1-2} at a temperature T* which coincides with the spinodal temperature T s (T s = 0 for our model) where the metastable supercooled phase becomes instable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.