Abstract
Vehicular Ad hoc Networks (VANETs) are expected to serve as support to the development of not only safety applications but also information-rich applications that disseminate relevant data to vehicles. Due to the continuous collection, processing, and dissemination of data, one crucial requirement is the efficient use of the available bandwidth. Firstly, the rate of message transmissions must be properly controlled in order to limit the amount of data inserted into the network. Secondly, messages must be carefully selected to maximize the utility (benefit) gain of vehicles in the neighborhood. We argue that such selection must aim at a fair distribution of data utility, given the possible conflicting data interests among vehicles.In this work, we propose a data dissemination protocol for VANETs that distributes data utility fairly over vehicles while adaptively controlling the network load. The protocol relies only on local knowledge to achieve fairness with concepts of Nash Bargaining from game theory. We show the applicability of the protocol by giving example of utility functions for two Traffic Information Systems (TIS) applications: (i) parking-related and (ii) traffic information applications. The protocol is validated with both real-world experiments and simulations of realistic large-scale networks. The results show that our protocol presents a higher fairness index and yet it maintains a high level of bandwidth utilization efficiency compared to other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.