Abstract

The heuristic search processes like simple genetic algorithms help in achieving optimization but do not guarantee robustness so there is an immediate need of a machine learning technique that also promises robustness. Diploid genetic algorithms ensure consistent results and can therefore replace Simple genetic algorithms in applications such as test data generation and regression testing, where robustness is more important. However, there is a need to review the work that has been done so far in the field. It is also important to analyse the applicability of the premise of the dominance techniques applied so far in order to implement the technique. The work presents a systematic review of diploid genetic algorithms, examines the premise of the dominance relation used in different works and discusses the future scope. The work also discusses the biological basis of evaluating dominance. The work is important as the future of machine learning relies on techniques that are robust as well as efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.