Abstract

Abstract A comprehensive investigation was carried out using two different experimental setups: A 1.5-stage axial turbine and a simplified model, a “spoked-wheel” setup with a rotating wake generator consisting of cylindrical bars. The second stator of the turbine was designed at MTU Aero Engines as a high-lift profile with a Reynolds number typical for low-pressure turbines in jet engines. At design conditions, the flow on the stator 2 suction side features a pronounced separation bubble. To study the behavior of the stator 2 boundary layer and the interaction mechanisms between stator and rotor wakes, different measurement techniques were used: X-wire probes, five-hole probes, static pressure tappings, and surface mounted hot-film gauges. It was found that a rotating wake generator of the spoked-wheel type is not capable of resolving the relevant clocking mechanisms that occur in a real engine. However, such a simplified setup is useful to separate some of the physical mechanisms, and in case that the interaction of the stator 1 wakes with the stator 2 boundary layer is negligible, a spoked-wheel setup is well suited to simulate the influence of periodically incoming wakes on the transition behavior of stator 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.