Abstract

There have been many recent theoretical and experimental reports on the propagation of light pulses at speeds exceeding the speed of light in vacuum $c$ within media with anomalous dispersion, either opaque or with gain. Superluminal propagation has also been reported within vacuum, in the case of inhomogeneous pulses. In this paper we show that the observations of superluminal and non-causal propagation of evanescent pulses under the conditions of frustrated internal reflection are only apparent, and that they can be simply explained employing an explicitly (sub)luminal causal theory. However, the usual one-dimensional approach to the analysis of pulse propagation has to be abandoned and the spatial extent of the incoming pulse along the directions normal to the propagation direction has to be accounted for to correctly interpret the propagation speed of these evanescent waves. We illustrate our theory with animations of the time development of a pulse built upon the Huygen's construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.